

GCE

Chemistry A

Unit F325: Equilibria, Energetics and Elements

Advanced GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016

Mark scheme

June 2016

1. Annotations available in RM Assessor.

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
^	Omission mark
RE	Rounding error
SF	Error in number of significant figures
✓	Correct response

Mark scheme

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Meaning	
Answers which are not worthy of credit	
Statements which are irrelevant	
Answers that can be accepted	
Words which are not essential to gain credit	
Underlined words must be present in answer to score a mark	
Error carried forward	
Alternative wording	
Or reverse argument	
	Answers which are not worthy of credit Statements which are irrelevant Answers that can be accepted Words which are not essential to gain credit Underlined words must be present in answer to score a mark Error carried forward Alternative wording

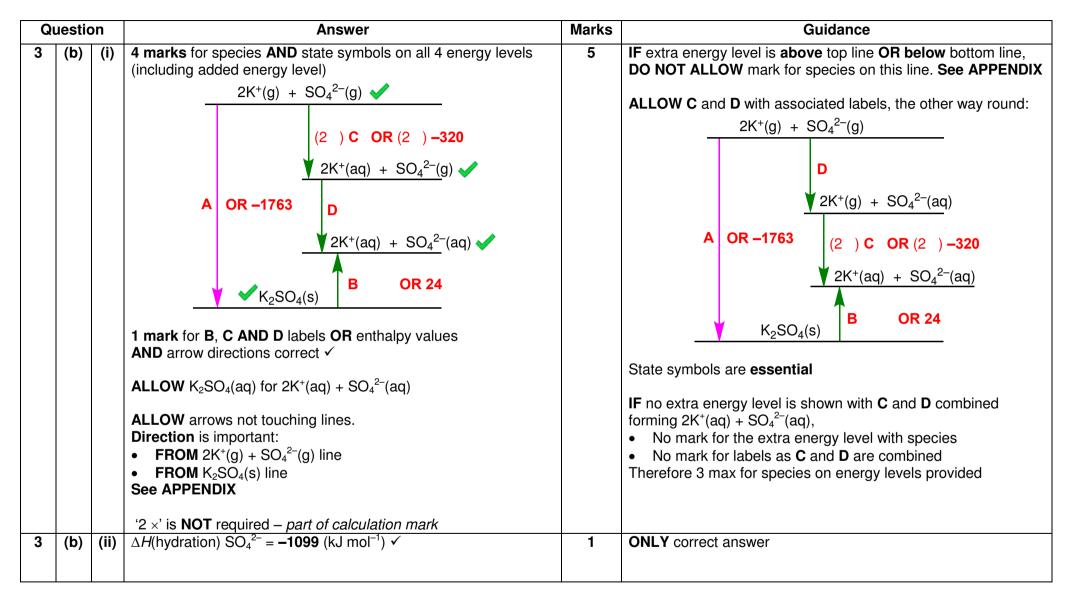
3. The following questions should be marked using **ALL** appropriate annotations to show where marks have been awarded in the body of the text:

2(a)

4(b)(ii) 4(c)

- 4(d)
- 4(u) 5(c)(i)
- 5(c)(ii)
- 5(d)(iv)
- 6(c)
- 8(e)

Q	Question		Answer	Marks	Guidance
1	(a)		IGNORE any charges shown within complexes (treat as rough working) Formulae 2 marks [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ ✓	3	For charges, ALLOW +2 and -2 Square brackets required, i.e. DO NOT ALLOW $Cu(NH_3)_4(H_2O)_2^{2+}$ ALLOW Ligands in any order
			[CuCl₄] ^{2−} ✓		ALLOW CuCl ₄ ²⁻ i.e. no brackets OR Cu(Cl) ₄ ²⁻
			Colours 1 mark blue AND yellow ✓ Mark independently of formulae		 For CuCl₄²⁻, ALLOW green-yellow OR yellow-green DO NOT ALLOW green For [Cu(NH₃)₄(H₂O)₂]²⁺ DO NOT ALLOW pale blue, light blue DO NOT ALLOW precipitate with blue OR yellow
1	(b)	(i)	Donates two electron pairs to a metal ion/metal/Cu ²⁺ AND forms two coordinate bonds to a metal ion/metal/Cu ²⁺ ✓	1	 ALLOW lone pairs for electron pairs ALLOW molecule/atom/ion/substance for 'ligand' ALLOW dative (covalent) bonds for coordinate bonds ALLOW transition element for metal Two is needed once only e.g. Donates two electron pairs to form coordinate bonds to a metal ion/metal/Cu²⁺ Donates electron pairs to form two coordinate bonds to a metal ion/metal/Cu²⁺ DO NOT ALLOW donates two electron pairs to form one/a coordinate bond


Question	Ans	wer	Marks	Guidance
1 (b) (ii)	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	OH_{2}	3	FULL ANNOTATIONS MUST BE USED 2 marks: one for each correct isomer ✓✓ TAKE CARE: structures may be in different orientations and in different order IF BOTH isomers are 'correct', but O connectivity wrong, AWARD 1 mark for both structures Check H ₂ O ligands carefully for connectivity ALLOW H ₂ O reversed shown as -O ₂ H IGNORE charges (anywhere) MOTE: For each structure, ALL O atoms must be shown AND For (COO ⁻) ₂ , ALLOW skeletal, structural or displayed formula DO NOT ALLOW structures such as those shown below
	$\begin{array}{c} cis \checkmark \\ trans \\ optical \checkmark \end{array}$	cistrans✓optical		1 mark : for whole of 2nd row for whole of 'Type' row i.e. (cis AND optical) AND trans only

Q	Question		Answer	Marks	Guidance
1	(b)	(iii)	CuC₄H₄O ₁₀ ^{2–} Formula ✓ 2– charge ✓ MARK formula and charge INDEPENDENTLY	2	Empirical formula essential, e.g. DO NOT ALLOW Cu(COO) ₂ (H ₂ O) ₂ for formula mark ALLOW any order of elements in formula ALLOW –2 for charge
	<u> </u>		Total	9	

Question	Answer	Marks	Guidance
2 (a)	initial rates data (3 marks) NOTE: Each comparison MUST relate to the actual change in concentration/rate in the experiments EXPTS H_2O_2 : $[H_2O_2] \times 2$ rate $\times 2$ (1 & 2) AND 1st order ✓ H ⁺ : $[H^+] \times 2$ rate does not change (2 & 3) AND Zero order ✓ I ⁻ : $[I^-] \times 2$ AND $[H_2O_2] \times 2$ rate $\times 4$ (2 & 4) OR $[I^-] \times 2$ AND $[H_2O_2] \times 4$ rate $\times 8$ (1 & 4) OR $[I^-] \times 2$ AND $[H_2O_2] \times 2$ rate $\times 4$ (3 & 4) AND 1st order ✓	3	FULL ANNOTATIONS MUST BE USEDTHROUGHOUT,• Square brackets NOT REQUIRED around H ₂ O ₂ , H ⁺ and I ⁻ • ALLOW 'doubles' for × 2; quadruples for × 4ALLOW direct comparison of concentrations and rate, e.g. $[H_2O_2]$ changes by $\frac{0.0020}{0.0010} = 2$, rate changes by $\frac{1.14 \times 10^{-5}}{5.70 \times 10^{-6}} = 2$ AND 1st order (Expts 1 & 2)DO NOT ALLOW I ₂ for I ⁻ IGNORE [H ⁺] for Expts 3 & 4
	Calculation of rate constant (3 marks), EITHER $k = \frac{5.70 \times 10^{-6}}{0.0010 \times 0.20}$ OR 2.85 × 10 ⁻² OR 0.0285 OR 0.029 ✓ $k = 2.9 \times 10^{-2} \checkmark$ (2 SF in standard form) Subsumes previous mark if no working shown	3	IGNORE working DO NOT ALLOW 0.03 ALLOW ECF from error in powers of 10 ONLY e.g. 2.9×10^{-3} by use of 0.010 instead of 0.0010 DO NOT ALLOW 2.90 $\times 10^{-2}$ (3 SF) OR 29 $\times 10^{-3}$ (Not standard form)
	$dm^3 mol^{-1} s^{-1} \checkmark$		ALLOW mol ⁻¹ , dm ³ and s ⁻¹ in any order, e.g. mol ⁻¹ dm ³ s ⁻¹

Qu	estio	n	Answer	Marks	Guidance
2	(b)		H ⁺ ions are consumed/used up OR H ⁺ ions are in the (overall) equation ✓	1	ALLOW H ⁺ is not regenerated/reformed ALLOW H ⁺ is a reactant but not a product ALLOW 'it' for H ⁺ IGNORE H ⁺ is not in the rate equation/does not affect rate IGNORE does not take part in rate-determining step
2	(c)	(i)	The slowest/slow step ✓	1	ALLOW step that takes the longest time
2	(c)	(i i)	NO ECF from incorrect rate equation Principles• H_2O_2 and Γ must be the reactants in 1st step• 2nd mark only to be awarded if 1st mark scored• Step 4 is independentReactants of Step 1 as $H_2O_2 + \Gamma$ 1 mark Step 1: $H_2O_2 + \Gamma \checkmark$ Products of Step 1 AND all of Step 21 mark $H^+ + OH^- \rightarrow H_2O \checkmark$ Step 4 (Independent mark) $H^+ + OH^- \rightarrow H_2O \checkmark$ 1 mark	3	IGNORE state symbolsElements can be in any order in formulaeAlternatives for 2nd mark Step 1: \rightarrow HIO + OH ⁻ AND Step 2: H ⁺ + OH ⁻ \rightarrow H ₂ O \checkmark Step 1: \rightarrow H ₂ O ₂ I ⁻ AND Step 2: H ⁺ + H ₂ O ₂ I ⁻ \rightarrow HIO + H ₂ O \checkmark Other possibilities, contact TLALLOW2H ⁺ + 2OH ⁻ \rightarrow 2H ₂ O
			Total	11	$H_3O^+ + OH^- \rightarrow 2H_2O$
			Iotai	11	

Question	Answer		Guidance
3 (a)	<pre>(enthalpy change for) 1 mole of gaseous ions OR 1 mole of hydrated ions/aqueous ions ✓ gaseous ions forming aqueous/hydrated ions ✓</pre>	2	 one mole can be stated just once EITHER with gaseous ions OR with aqueous ions, e.g. 1 mole of gaseous ions forms hydrated ions/aqueous ions Gaseous ions form 1 mole of hydrated ions/aqueous ions ALLOW 1 mol for 1 mole IGNORE 'energy released' OR 'energy required' For 2nd mark IGNORE gaseous ions are hydrated IGNORE gaseous ions dissolve in water Particles formed not stated ALLOW 1 mark for: 1 mole of gaseous IONS forms aqueous/hydrated atoms/ particles/ molecules

3 (c) (ii) <i>Calcu</i> OR OR Solid	queous particles are more disordered than solid (particles)		
OR		1	For particles, ALLOW ions DO NOT ALLOW molecules/atoms ALLOW 'When the state changes from solid to aqueous, disorder increases' For more disordered, ALLOW less ordered/ more freedom/ more ways of arranging energy/ more random For aqueous particles, ALLOW particles in solution IGNORE dissolved
	alculation (2 marks) $\Delta G = 24 - (298 \times 0.225) \text{ OR } 24 - 67.05 (in \ kJ)$ OR 24000 - (298 × 225) OR 24000 - 67050 $(in \ J) \checkmark$ alculation of ΔG (IGNORE UNITS) $\Delta G = -43 \ (kJ \ mol^{-1}) \text{ OR } -43000 \ (J \ mol^{-1}) \checkmark$ Subsumes 1st calculation mark eason for solubility Calculated value of ΔG that is negative AND Statement that: ΔG is negative OR $\Delta G < 0$ OR $-43 < 0$ OR $\Delta H - T\Delta S < 0$ OR $T\Delta S > \Delta H \checkmark$	3	Contact TL if solely entropy approach rather than ΔG ALLOW –43.1 OR –43.05 (<i>calculator value</i>) ALLOW 1 calculation mark (IGNORE units) for –67.(026) OR –67026 <i>ECF</i> from 225 instead of 0.225 18.(375) OR +18.375 <i>ECF</i> from 25 instead of 298 ALLOW other ECF from ONE error in 1st step of calc, e.g. incorrect value for ΔH such as –1099 from 3bii \rightarrow –1166.05 TAKE CARE that same units used for ΔH and ΔS NO reason mark from a +ve value of ΔG
	Total	12	

Qu	estion	Answer	Marks	Guidance
Qu 4	(a) (b)	Answerlodine is non-polarORlodine does not form H bonds with water \checkmark FIRST, CHECK THE ANSWER ON ANSWER LINEIF K _c = 104 dm ³ mol ⁻¹ award 4 marks: 3 for calculation of 104 from data, 1 for unitsTequilibrium concentrations (mol × 5) (1 mark)I ₂ = 4.00 × 10 ⁻⁵ × 5 = 2.00 × 10 ⁻⁴ (mol dm ⁻³)AND I ₂ = 4.00 × 10 ⁻⁵ × 5 = 2.00 × 10 ⁻⁴ (mol dm ⁻³)AND I = 9.404 × 10 ⁻² × 5 = 0.4702 (mol dm ⁻³) AND I ₃ = 1.96 × 10 ⁻³ × 5 = 9.80 × 10 ⁻³ (mol dm ⁻³)Calculation of K _c and units (3 marks) $K_c = \frac{[I_3^-(aq)]}{[I_2(aq)] × [I^-(aq)]}$ OR $\frac{9.80 × 10^{-3}}{2.00 × 10^{-4} × 0.4702}$ = 104 ✓Must be 3 SFdm ³ mol ⁻¹ OR mol ⁻¹ dm ³ ✓	Marks 1 4	GuidanceIGNORE iodine is slightly polarIGNORE 'cannot bond to water' (too vague)IGNORE 'inability to induce a dipoleFULL ANNOTATIONS MUST BE USEDThroughout, at least 3SF but ALLOW absence of trailing zeroese.g. for 9.80×10^{-3} ALLOW 9.8×10^{-3} FOR I^- 0.4702 , ALLOW $0.47(0)$ (mol dm ⁻³) still $\rightarrow 104$ for calcState symbols not required in K_c expressionALLOW ECF from incorrect concentrationsAny ECF value MUST be to 3 SF for K_c valueCOMMON ERRORS104.2109741 (calc) $> 3 SF$ 2 marks + units521. $no \times 5$ for concs2 marks + units521.1 \rightarrow 521.0548703 as above and $> 3SF$ 1 mark + units2610 $\div 5$ instead of $\times 5$ for concs2 marks + units9.60 \times 10 ⁻³ K_c upside down, correct concs2 marks + units
				1.92 × 10⁻³ K_c upside down, no × <i>5 for concs</i> 1 mark + units NOTE : With K_c upside down, units become mol dm ⁻³ by ECF

Qu	estio	n	Answer	Marks	Guidance
4	(c)		Ag ⁺ /silver nitrate reacts with I ⁻ to form AgI/silver iodide OR Ag ⁺ + I ⁻ \rightarrow AgI \checkmark	4	FULL ANNOTATIONS MUST BE USED
			yellow precipitate/solid forms ✓		DO NOT ALLOW cream OR cream–yellow ALLOW just 'yellow' if supported by AgI(s) somewhere
			Equilibrium 2 shifts to the left ✓		
			Equilibrium 1 shifts to left AND I₂ comes out of solution/less I₂ dissolves/ I₂ precipitates/black solid /grey solid /violet solid ✓		
4	(d)	(d) in a	in all equations ALLOW equilibrium signs IGNORE state symbols	3	FULL ANNOTATIONS MUST BE USED
			Reaction 1: 1 mark $2l_2 + 5O_2 \rightarrow 2l_2O_5 \checkmark$		ALLOW correct multiples throughout, e.g. $I_2 + 2^{1/2}O_2 \rightarrow I_2O_5$
			Reaction 2: 2 marks 1st mark: ALL CORRECT species		For 1st mark, IGNORE e [−] present
			e.g.: $I_2 + OH^- \rightarrow I^- + IO_3^- + H_2O$		ALLOW species/equation with NaOH or KOH, e.g. $3I_2 + 6NaOH \rightarrow 5I^- + IO_3^- + 3H_2O + 6Na^+$ $3I_2 + 6NaOH \rightarrow 5NaI + NaIO_3 + 3H_2O$
		2nd mark for CORRECT balanced equation $3I_2 + 6OH^- \rightarrow 5I^- + IO_3^- + 3H_2O$ $\checkmark \checkmark$		ALLOW Species: $I_2 + OH^- \rightarrow I^- + IO_2^+ + H_2O \checkmark$ OR Equation: $3I_2 + 4OH^- \rightarrow 5I^- + IO_2^+ + 2H_2O \checkmark \checkmark$	
					Species: $I_2 + OH^- \rightarrow I^- + IO^{3+} + H_2O \checkmark$ OR Equation: $3I_2 + 2OH^- \rightarrow 5I^- + IO^{3+} + H_2O \checkmark \checkmark$
			Total	12	

C	uesti	on	Answer	Marks	Guidance
5	(a)		$(\mathcal{K}_{a} =) \frac{[H^{+}][NO_{2}^{-}]}{[HNO_{2}]} \checkmark$	1	IGNORE $\frac{[H^+]^2}{[HNO_2]}$ OR $\frac{[H^+][A^-]}{[A]}$
			IGNORE state symbols		ALLOW H ₃ O ⁺ for H ⁺
					Square brackets required
5	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.12 award 2 marks	2	
			$[H^+] = \sqrt{K_a [HNO_2]} = 7.502 \times 10^{-3} \text{ (mol dm}^{-3}) \checkmark$		ALLOW intermediate value from 3 SF (7.50 up to calculator value of 7.501999733 \times 10^{-3}
			pH = −log 7.502 × 10^{-3} = 2.12 ✓ pH to 2 DP		ALLOW 1 mark for 2.1 OR answer > 2 DP (i.e. not 2 DP)
					ONLY ALLOW pH mark by ECF if K_a AND 0.120 used and AND pH <7
					COMMON ERRORS (MUST be to 2 DP)
					pH = 4.25 No square root:1 mark $[H^+] = (4.69 \times 10^{-4} \times 0.120) = 5.628 \times 10^{-5} \text{ (mol dm}^{-3})$ pH = −log 5.628 × 10 ⁻⁵ = 4.25 ✓
					pH = 0.92 no <i>K</i> _a used: zero marks pH = -log 0.120 = 0.92
					pH = 13.08 $K_{\rm w}$ /pOH used: zero marks
					$pH = -\log \frac{1.00 \times 10^{-4}}{0.120} \mathbf{OR} 14 - \log 0.120 = 13.08$

C	uesti	on	Answer	Marks	Guidance
5	(c)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 3.43, AWARD 4 marks	4	FULL ANNOTATIONS MUST BE USED
			Expression: $K_a \times acid/base ratio$ Use of $K_a \times \frac{[HNO_2]}{[NO_2^-]}$ OR $4.69 \times 10^{-4} \times \frac{[HNO_2]}{[NO_2^-]} \checkmark$		ALLOW just $K_a \times \frac{\text{acid}}{\text{salt}}$ expression
			Using correct concs/mol in expression $[H^+] = 4.69 \times 10^{-4} \times \frac{0.0400}{0.0500} \checkmark Subsumes \text{ previous mark}$		Mark by ECF from $4.69 \times 10^{-4} \times \frac{[NO_2^-]}{[HNO_2]}$ inverted expression
			Calculation of [H ⁺] [H ⁺] = 3.752×10^{-4} (mol dm ⁻³) \checkmark		Mark by ECF from incorrect [HNO ₂] and [NO ₂ ⁻] ONLY award marks for a pH calculation via K_a AND using concentrations/mol derived from the question
			pH to 2 DP (From 3.42573717) pH = −log $3.752 \times 10^{-4} = 3.43 \checkmark$		DO NOT ALLOW final pH mark by ECF if pH > 7
			NO marks are available using K_a square root approach (weak acid pH) K_w /10 ⁻¹⁴ approach (strong base pH)		COMMON ERRORS BUT CHECK WORKING pH = 2.82 3 marks initial concs: 0.200 and 0.0625
			ALLOW alternative approach based on Henderson– Hasselbalch equation (ALLOW $-\log K_a$ for pK_a) $pH = pK_a + \log \frac{[NO_2]}{[HNO_2]}$ OR $pK_a - \log \frac{[HNO_2]}{[NO_2]}$		pH = 3.23 3 marks 0.0400 and 0.0500 acid/base ratio inverted pH = 3.83 2 marks
			$pH = pK_{a} + \log \frac{0.0500}{0.0400} \text{ OR } pK_{a} - \log \frac{0.0400}{0.0500} \checkmark$ $pH = pK_{a} + 0.097 \checkmark$		initial concs: 0.200 and 0.0625 and ratio inverted pH = 2.73 3 marks Incorrect [NO ₂ ⁻] = 0.01 and correct [HNO ₂] = 0.04 pH = 4.03 3 marks
			pH = 3.329 + 0.097 = 3.43 ✓		correct $[NO_2^-] = 0.05$ and incorrect $[HNO_2] = 0.01$

F325

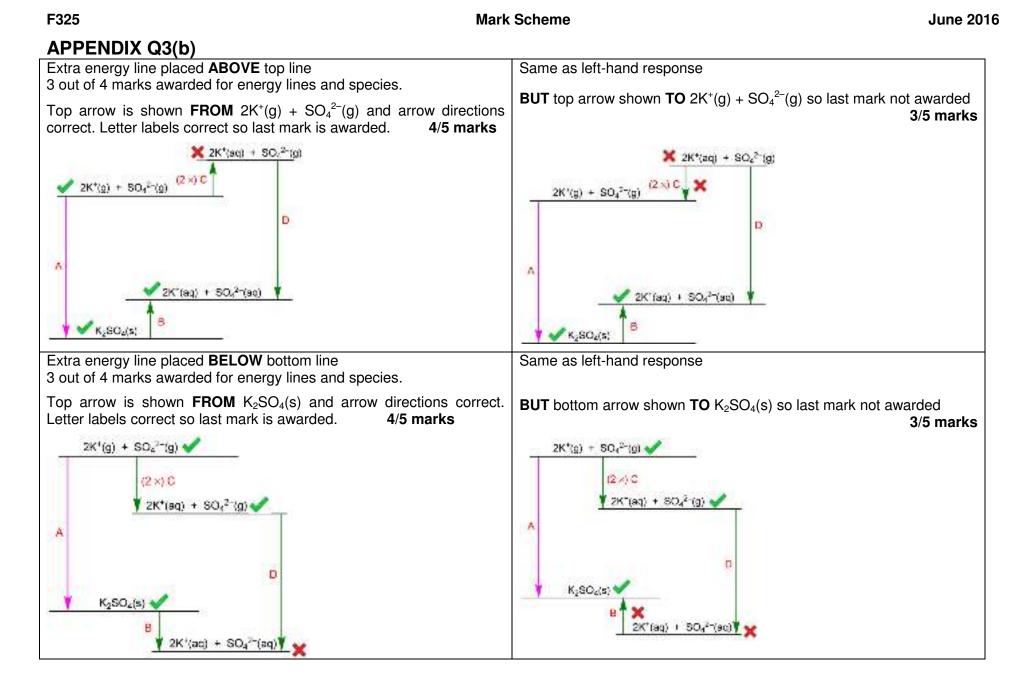
G	uesti	on	Answer	Marks	Guidance
5	(c)	(ii)	Equilibrium: 1 mark HNO ₂ ⇒ H ⁺ + NO ₂ ⁻ ✓ (ignore state symbols)	4	FULL ANNOTATIONS MUST BE USED IGNORE HA ⇒ H ⁺ + A ⁻ Equilibrium sign essential BUT ALLOW small slips in its appearance if it is obviously an attempt to show an equilibrium sign rather than an arrow
			Control of pH: 2 marks (QWC) Added HCI NO_2^- reacts with added acid/HCI/H ⁺ OR $NO_2^- + H^+ \rightarrow$ OR more HNO ₂ forms \checkmark		QWC: Quality of written communication DO NOT ALLOW HA and A^- for HNO ₂ and NO ₂ ⁻ IGNORE just acid reacts with added alkali
			Added NaOH HNO_2 reacts with added alkali/NaOH/OH ⁻ $OR HNO_2 + OH^- \rightarrow$ $OR more NO_2^-$ forms $OR H^+$ reacts with added alkali/NaOH $OR H^+ + OH^- \rightarrow \checkmark$		IGNORE just conjugate base/salt/base reacts with added acid DO NOT ALLOW salt/base reacts with added acid
			Equilibrium shift: 1 mark for shifts in HNO ₂ ⇒ H ⁺ + NO ₂ ⁻ (See 1st mark) Equilibrium for added acid → left AND Equilibrium for added alkali → right ✓ (QWC)		AWARD 'shift mark' ONLY if correct equilibrium equation has been given IGNORE any other equilibria in response

Q	Question		Answer	Marks	Guidance
5	(d)	(i)	Endothermic AND K _w increases with temperature OR Endothermic AND dissociation increases with temperature OR Endothermic AND (dissociation) involves breaking bonds ✓	1	Endothermic and reason required for the mark ALLOW Endothermic AND increasing temperature shifts equilibrium/reaction to the right/favours forward reaction DO NOT ALLOW breaking hydrogen bonds
					OR intermolecular bonds/forces
5	(d)	(ii)	$\begin{array}{l} \textbf{OH}^{-} \ \textbf{concentration} \\ [OH^{-}] = \frac{9.311 \times 10^{-14}}{1.00 \times 10^{-7}} = 9.311 \times 10^{-7} \ (\text{mol dm}^{-3}) \ \checkmark \end{array}$	2	<i>H</i> ⁺ <i>OR OH</i> ⁻ <i>concentration (neutral pH)</i> [H ⁺] = [OH ⁻] = $\sqrt{(9.311 \times 10^{-14})}$ = 3.05 × 10 ⁻⁷ (mol dm ⁻³) ✓
			<i>Explanation (dependent on 1st mark)</i> 9.311 × 10 ⁻⁷ > 1.(00) × 10 ⁻⁷ OR [OH ⁻] > [H ⁺] OR OH ⁻ in excess AND Alkaline ✓		Explanation (dependent on 1st mark) $pH = -log (3.05 \times 10^{-7}) = 6.5 \rightarrow 6.515501837 \text{ (calc)}$ AND Alkaline \checkmark
5	(d)	(iii)	p <i>K</i> _w = 13.03 ✓	1	ONLY correct answer

Q	uesti	on	Answer	Marks	Guidance
5	(d)	(iv)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 10.76, award 3 marks	3	FULL ANNOTATIONS MUST BE USED
			$\begin{aligned} \hline \textbf{Dilution 1 mark} \\ [OH^{-}(aq)] &= [NaOH(aq)] = \frac{0.0270}{5} = 0.00540 \text{ (mol dm}^{-3}) \checkmark \\ \hline \textbf{[H^{+}] 1 mark} \\ [H^{+}(aq)] &= \frac{9.311 \times 10^{-14}}{0.00540} = 1.72 \times 10^{-11} \text{ (mol dm}^{-3}) \checkmark \end{aligned}$		ALLOW dilution AFTER calculation of $[H^{+}(aq)]$ i.e. original $[H^{+}] = \frac{9.311 \times 10^{-14}}{0.0270} = 3.45 \times 10^{-12} \pmod{dm^{-3}} \checkmark$ After dilution, $[H^{+}] = 3.45 \times 10^{-12} \times 5 = 1.72 \times 10^{-11} \pmod{dm^{-3}} \checkmark$ $pH = -\log 1.72 \times 10^{-11} = 10.76 \checkmark$ ALLOW ECF from incorrect $[H^{+}(aq)]$ provided that pH >7
			Calculator: 1.724259259 × 10 ⁻¹¹ <i>pH 1 mark</i> pH = −log 1.72 × 10 ⁻¹¹ = 10.76 ✓		
			ALLOW pOH method for 2nd and 3rd mark:		pH = 11.46 No dilution at 60° C (9.311 × 10^{-14}) 2 marks pH = $-\log(3.45 \times 10^{-12}) = 11.46$
			pOH = $-\log 0.00540 = 2.27 \checkmark$ (calculator 2.26760624) pH = 13.03 − 2.27 = 10.76 \checkmark		pH = 12.43 No dilution AND 25 ^o C (1.00×10^{-14}) 1 mark pH = $-\log(3.70 \times 10^{-13}) = 12.43$
					pH = 12.16 ×5 instead of ÷ 5 at 60° C (9.311 × 10^{-14}) 2 marks pH = $-\log(6.879 \times 10^{-13}) = $ 12.16
					pH = 13.13 ×5 instead of ÷ 5 at 25°C (1.00×10^{-14}) 1 mark pH = $-\log(7.407 \times 10^{-14})$ = 13.13
					NOTE: Attempts at dilution \rightarrow 0.0270 with error in powers of 10 \rightarrow 12.46 from 0.00270, etc may give 2 marks by ECF
			Total	18	

Qı	uestio	on	Answer	Marks	Guidance
6	(a)		 Definition The e.m.f. (of a half-cell) compared with/connected to a (standard) hydrogen half-cell/(standard) hydrogen electrode ✓ Standard conditions Units essential Temperature of 298 K / 25°C AND (solution) concentrations of 1 mol dm⁻³ AND pressure of 100 kPa OR 10⁵ Pa OR 1 bar ✓ 	2	For e.m.f., ALLOW voltage OR potential difference/p.d. OR electrode/reduction/redox potential ALLOW e.m.f. of a cell ALLOW /(standard) hydrogen cell IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) DO NOT ALLOW hydrogen fuel cell ALLOW 1M OR 1 mol/dm ³ DO NOT ALLOW 1 mol OR 1 mole ALLOW 1 atmosphere/1 atm OR 101 kPa OR 101325 Pa
6	(b)	(i)	Complete circuit with voltmeter AND labelled salt bridge linking two half-cells \checkmark Cu electrode in Cu ²⁺ \checkmark Pt electrode in V ²⁺ AND V ³⁺ \checkmark Cu shown as + AND Pt shown as - \checkmark electrons in wire AND ions in salt bridge \checkmark On diagram or stated	5	Half cells can be drawn in either order Half cells must show electrodes dipping into solutions ALLOW small gaps in circuit DO NOT ALLOW half-cell with H ₂ added IGNORE any stated concentrations IGNORE 'anode' and 'cathode' In salt bridge, ALLOW any stated ion that may be present, e.g. K ⁺ , NH ₄ ⁺ , NO ₃ ⁻ , Cu ²⁺ , V ²⁺ , V ³⁺ IGNORE direction of travel of ions and electrons. ALLOW Cu half cell as + AND V half cell as –

6 (b) (ii) 0.60 OR 0.6 (V) ✓ 1 IGNORE any sign 6 (c) Definitions: 1 mark Oxidising agent removes/accepts/gains electrons OR increases oxidation number (of another species) AND Reducing agent adds/donates/loses electrons OR decreases oxidation number (of another species) ✓ 6 <i>FULL ANNOTATIONS MUST BE USED</i> ALLOW oxidising agent decreases its oxidation number AND reducing agent increases its oxidation number 0 AND Reducing agent: 2 marks Cr ²⁺ oxidises Al OR Cr ²⁺ acts as oxidising agent AND 3Cr ²⁺ + Al → 3Cr ²⁺ + Al ³⁺ ✓ IGNORE state symbols (even if incorrect) 0 XALLOW - in equation 3Cr ²⁺ + Al → 3Cr ²⁺ + Al ³⁺ ✓ IGNORE equation sith Cr ²⁺ as reactant Explanation (dependent on Cr ³⁺ oxidising Al above) E of redox system 2 (Cr ³⁺ (Cr ²⁺) is more positive /less negative (than E of system 1 (Al ³⁺ /Al)) V Reducing agent: 3 marks Cr ²⁺ reduces FeO ₄ ²⁺ (/H ⁺) ✓ COC ³⁺ + 2FeO ₄ ²⁺ (/H ⁺) ✓ CCP ³⁺ + 2FeO ₄ ²⁺	Q	Question		Answer	Marks	Guidance
Oxidising agent removes/accepts/gains electrons OR increases oxidation number (of another species) AND Reducing agent adds/donates/loses electrons OR decreases oxidation number (of another species) \checkmark ALLOW oxidising agent decreases its oxidation number AND evaluating agent increases its oxidition number AND reducing agent: 2 marks Cr ³⁺ oxidises AI OR Cr ³⁺ acts as oxidising agent AND 3Cr ²⁺ + AI \rightarrow 3Cr ²⁺ + AI ³⁺ \checkmark ALLOW \Rightarrow in equation IF more than one equation shown for Cr ³⁺ as oxidising agent, CON and zero marks for 2 oxidising agent marks IGNORE equations MUST be in terms of positive/negative: IGNORE 'higher' <i>E</i> OR 'greater'Reducing agent: 3 marks Cr ³⁺ reduces FeOa ²⁺ (Pt ¹) \checkmark 2Cr ³⁺ + 2FeOa ²⁺ + 2FeOa ²⁺ + 2Fe ³⁺ + H ₂ O \checkmark Explanation (dependent on Cr ⁴⁺ orkgo F ²⁺ + 2Fe ³⁺ + H ₂ O \checkmark Explanation (dependent on Cr ⁴⁺ reducing FeOa ²⁺ Above) F of redox system 5 (Cr ₂ O ₂ - ²⁻ + 2Fe ³⁺ + H ₂ O \checkmark Explanation (dependent on Cr ⁴⁺ reducing FeOa ⁴⁺ above) F of redox system 6 (FeOa ⁴⁺) Feo ⁴⁺) ORA, i.e. in terms of 6 being more positive (than 5) \checkmark IF more than one equation shown for Cr ⁴⁺ as a reducing agent, CON and zero marks for 3 reducing agent marks IGNORE equations with Cr ²⁺ as reactantExplanation (dependent on Cr ⁴⁺ reducing FeOa ⁴⁺ above) F of redox system 6 (FeOa ⁴⁺) Feo ⁴⁺) ORA, i.e. in terms of 6 being more positive (than 5) \checkmark IF more than one equation shown for Cr ⁴⁺ as reactant Explanations MUST be in terms of positive/negative: IGNORE 'higher' <i>E</i> OR 'greater'ALLOW E _{col1} = +0.87 V (+ sign required)	6	(b)	(ii)	0.60 OR 0.6 (V) ✓	1	IGNORE any sign
Oxidising agent: 2 marks Cr^{3+} oxidises Al OR Cr^{3+} acts as oxidising agent AND $3Cr^{3+} + Al \rightarrow 3Cr^{2+} + Al^{3+} \checkmark$ • ALLOW = in equation IF more than one equation shown for Cr^{3+} as oxidising agent, CON and zero marks for 2 oxidising agent marks IGNORE equations with Cr^{2+} as reactantExplanation (dependent on Cr^{3+} oxidising Al above) E of redox system 2 (Cr^{3+}/Cr^{2+}) is more positive (less negative (than E of system 1 (Al^{3+}/Al))) ORA, i.e. in terms of 1 being more negative (than 2) \checkmark • ALLOW = in equation IF more than one equation shown for Cr^{3+} as reactantReducing agent: 3 marks Cr^{3+} reduces FeO42 - 2H ⁺ \rightarrow Cr2O72 + 2Fe ³⁺ + H2O \checkmark IF more than one equation shown for Cr^{3+} as a reducing agent, CON and zero marks for 3 reducing agent marks IGNORE equations with Cr^{2+} as reactantExplanation (dependent on Cr^{3+} reduceng FeO42 - 2H ⁺ \rightarrow Cr2O72 + 2Fe ³⁺ + H2O \checkmark IF more than one equation shown for Cr^{3+} as a reducing agent, CON and zero marks for 3 reducing agent marks IGNORE equations with Cr^{2+} as reactantExplanation (dependent on Cr^{3+} reducing FeO42 - above) E of redox system 5 (Cr2O72 - Cr3^+) is less positive/ more negative (than E of system 6 (FeO42 - Fe3^{3+})) ORA, i.e. in terms of 6 being more positive (than 5) \checkmark IF more than one equations MUST be in terms of positive/negative: IGNORE 'higher' E OR 'greater'ALLOW $E_{cell} = +0.87 V (+ sign required)$	6	(c)		Oxidising agent removes/accepts/gains electrons OR increases oxidation number (of another species) AND Reducing agent adds/donates/loses electrons OR	6	ALLOW oxidising agent decreases its oxidation number AND reducing agent increases its oxidation number IGNORE oxidising agent oxidises/is reduced OR reducing agent reduces/is oxidised In equations,
				$Cr^{3+} \text{ oxidises Al OR Cr}^{3+} \text{ acts as oxidising agent}$ AND $3Cr^{3+} + Al \rightarrow 3Cr^{2+} + Al^{3+} \checkmark$ Explanation (dependent on Cr ³⁺ oxidising Al above) E of redox system 2 (Cr ³⁺ /Cr ²⁺) is more positive /less negative (than E of system 1 (Al ³⁺ /Al)) ORA, i.e. in terms of 1 being more negative (than 2) ✓ Reducing agent: 3 marks Cr ³⁺ reduces FeO ₄ ²⁻ (/H ⁺) ✓ 2Cr ³⁺ + 2FeO ₄ ²⁻ + 2H ⁺ → Cr ₂ O ₇ ²⁻ + 2Fe ³⁺ + H ₂ O ✓ Explanation (dependent on Cr ³⁺ reducing FeO ₄ ²⁻ above) E of redox system 5 (Cr ₂ O ₇ ²⁻ /Cr ³⁺) is less positive/ more negative (than E of system 6 (FeO ₄ ²⁻ /Fe ³⁺))		 ALLOW ⇒ in equation IF more than one equation shown for Cr³⁺ as oxidising agent, CON and zero marks for 2 oxidising agent marks IGNORE equations with Cr²⁺ as reactant Explanations MUST be in terms of positive/negative: IGNORE 'higher' <i>E</i> OR 'greater' ALLOW <i>E</i>_{cell} = +1.25 V (+ sign required) IF more than one equation shown for Cr³⁺ as a reducing agent, CON and zero marks for 3 reducing agent marks IGNORE equations with Cr²⁺ as reactant Explanations MUST be in terms of positive/negative: IGNORE equations with Cr²⁺ as reactant
		1	1	Total	14	


Q	Question		Answer	Marks	Guidance
7	(a)	(i)	IGNORE any charges shown within complexes (treat as rough working) Complex ion C: [Ni(H ₂ O) ₆] ²⁺ ✓	3	ALLOW +2 and -2 for charges Square brackets required
			Solid D: Ni(OH)₂ ✓		ALLOW Ni(H ₂ O) ₄ (OH) ₂ (H ₂ O) ₄ and (OH) ₂ in any order IGNORE any square brackets
			Complex ion E: $[Ni(CN)_4]^{2-1}$		Square brackets required
					TAKE CARE for round brackets within complex ion, i.e. (H_2O) , (OH) and (CN)

Q	Question		Answer	Marks	Guidance
7	(a)	(ii)	Mark independently of 7(a)(i) ALLOW +2 and -2 for charges IGNORE any charges shown within complexes (treat as rough working) $Ni^{2+} + 2OH^- \rightarrow Ni(OH)_2 \checkmark$	4	For equations: IGNORE state symbol (even if wrong) Square brackets not required for Ni(OH) ₂ ALLOW [Ni(H ₂ O) ₆] ²⁺ + 2OH ⁻ \rightarrow [Ni(H ₂ O) ₄ (OH) ₂] + 2H ₂ O ALLOW [Ni(H ₂ O) ₆] ²⁺ + 2OH ⁻ \rightarrow Ni(OH) ₂ + 6H ₂ O ALLOW NiSO ₄ (aq) + 2OH ⁻ (aq) \rightarrow Ni(OH) ₂ (s) + SO ₄ ²⁻ (aq) ALLOW NiSO ₄ (aq) + 2KOH(aq) \rightarrow Ni(OH) ₂ (s) + K ₂ SO ₄ (aq) ALLOW acid/base OR neutralisation OR deprotonation ONLY IF [Ni(H ₂ O) ₆] ²⁺ AND [Ni(H ₂ O) ₄ (OH) ₂] used
			Type of reaction: precipitation ✓ INDEPENDENT of equation		ALLOW precipitate
			$[Ni(H_2O)_6]^{2+} + 4CN^- \rightarrow [Ni(CN)_4]^{2-} + 6H_2O(I) \checkmark$ Type of reaction: ligand substitution \checkmark INDEPENDENT of equation		ALLOW $[Ni(H_2O)_6]^{2+} + 4KCN \rightarrow [Ni(CN)_4]^{2-} + 6H_2O + 4K^+$ LOOK at formulae for E from 7(a)(i) (copied at bottom) ALLOW ECF in 7aii Equation for no round brackets around CN, i.e. $[NiCN_4]^{2-}$ in 7a(i) This is the only ECF allowed from 7ai structures. ALLOW ligand exchange
7	(b)	(i)	linear √	1	IGNORE planar

Q	uesti	on	Answer	Marks	Guidance
7	(b)	(ii)	Au/Gold has been oxidised from 0 to +1 ✓	2	IF Ag referred to, rather than Au, treat as a slip and apply BOD ALLOW 0 to 1 (i.e. no + sign for +1)
			O/Oxygen/O₂ has been reduced from 0 to –2 ✓		ALLOW 1 mark for ALL oxidation numbers correct with no oxidised or reduced OR oxidation and reduction wrong way round, e.g. Au goes from 0 to +1 and O goes from 0 to $-2 \checkmark$ Au is reduced from 0 to +1 and O is oxidised from 0 to $-2 \checkmark$
7	(b)	(iii)	IGNORE any charges shown within complexes (treat as rough working) 4Au + 8CN ⁻ + 2H ₂ O + O ₂ → 4[Au(CN) ₂] ⁻ + 4OH ⁻ ✓✓ First mark for all 6 species Second mark for balancing	2	IF Ag referred to, rather than Au, treat as a slip and apply BOD IGNORE state symbols CARE: In $[Au(CN)_2]^-$, - sign is OUTSIDE square brackets For 1st mark, IGNORE e ⁻ present ALLOW 1 mark for balanced equation with CN ⁻ missing, i.e. 4Au + 2H ₂ O + O ₂ \rightarrow 4Au ⁺ + 4OH ⁻ ALLOW 1 mark rogue e ⁻ on either side ALLOW multiples, e.g. 2Au + 4CN ⁻ + H ₂ O + 1/ ₂ O ₂ \rightarrow 2[Au(CN) ₂] ⁻ + 2OH ⁻ Au + 2CN ⁻ + 1/ ₂ H ₂ O + 1/ ₄ O ₂ \rightarrow [Au(CN) ₂] ⁻ + OH ⁻
7	(b)	(iv)	$CIO^{-} + 2H^{+} + 2e^{-} \rightarrow CI^{-} + H_2O \checkmark$	1	IGNORE state symbols ALLOW e for electron
			Tatal	12	ALLOW multiples
			Total	13	

Q	uestion	Answer	Marks	Guidance
8	(a)	Cu ²⁺ : $(1s^2) 2s^2 2p^6 3s^2 3p^6 3d^9 \checkmark$ Cu ⁺ : $(1s^2) 2s^2 2p^6 3s^2 3p^6 3d^{10} \checkmark$	2	IGNORE repeated 1s ² after 1s ² prompt on answer line ALLOW 4s ⁰ , either before or after 3d ALLOW upper case D, etc and subscripts, e.g3S ₂ 3P ⁶ DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
8	(b)	IGNORE any charges shown within formulae (treat as rough working) $CuCO_3 + 2HCOOH \rightarrow Cu(HCOO)_2 + H_2O + CO_2$ OR $CuO + 2HCOOH \rightarrow Cu(HCOO)_2 + H_2O$ OR $Cu(OH)_2 + 2HCOOH \rightarrow Cu(HCOO)_2 + 2H_2O \checkmark$	1	IGNORE state symbols In formula of HCOOH/HCOO, ALLOW H, C and O in ANY order ALLOW H ₂ CO ₃ for H ₂ O and CO ₂ in carbonate equation ALLOW (HCOO) ₂ Cu for Cu(HCOO) ₂ DO NOT ALLOW equation with CuSO ₄
8	(c)	2Cu ²⁺ + 4l ⁻ → 2Cul(s) + $I_2 \checkmark$ State symbol for Cul(s) ONLY required	1	ALLOW multiples, e.g. $Cu^{2+} + 2l^- \rightarrow Cul(s) + \frac{1}{2}l_2$ IGNORE other state symbols, even if incorrect
8	(d)	Starch ✓ Blue/black to colourless/white ✓ MARK INDEPENDENTLY	2	IGNORE 'brown' in composite colour with blue or black, i.e. ALLOW blue/brown to colourless ALLOW black/brown to colourless DO NOT ALLOW just 'it turns colourless/is decoloured' <i>Initial colour required</i> IGNORE clear for colourless

Question	Answer	Marks	Guidance
8 (e)	WORKING REQUIRED Correct answer: x = 4 required evidence of working	5	FULL ANNOTATIONS MUST BE USED
	$n(S_2O_3^{2-}) \text{ OR } n(Cu^{2+}) = \frac{0.0420 \times 23.5}{1000} = 9.87 \times 10^{-4} \text{ (mol) } \checkmark$		At least 3 SF required throughout Alternative approach for final 3 marks based on mass:
	In 250.0 cm ³ solution, $n(Cu^{2+}) = 9.87 \times 10^{-3} \text{ (mol)} \checkmark$		mass Cu(HCOO) ₂ = $9.87 \times 10^{-3} \times 153.5 = 1.515$ g \checkmark
	$M(Cu(HCOO)_2 \cdot 4H_2O) = \frac{2.226}{9.87 \times 10^{-3}} = 225.5 \text{ (g mol}^{-1}) \checkmark$		$n(H_2O) = \frac{2.226 - 1.515}{18(.0)} = \frac{0.711}{18(.0)} = 0.0395 \text{ (mol)} \checkmark$
	$\mathbf{x}(H_2O)$ has mass of 225.5 - $M(Cu(HCOO)_2)$ = 225.5 - 153.5 = 72(.0) \checkmark		$\boldsymbol{x} = \frac{0.0395}{9.87 \times 10^{-3}} = 4 \checkmark$
	$x = \frac{72(.0)}{18(.0)} = 4$ WHOLE NUMBER needed AND		ALLOW Cu(HCOO) ₂ •4H ₂ O
	evidence of working ✓		COMMON ERRORS for 4 marks x = 117 (calc 116.78) Use of 9.87 × 10 ⁻⁴ (no scaling × 10) $\rightarrow M = 2255.319$
			x = 17 (calc 16.53) 4 marks Use of 4.935×10^{-4} (Use of $0.5 \times 9.87 \times 10^{-3}$)
			Check $n(Cu^{2+})$ for other ECF s Check for ECF s from incorrect <i>M</i> (anhydr salt) Actual = 153.5
	Total	11	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

